国家药品监督管理局关于发布生物等效性研究的统计学指导原则和高变异药物生物等效性研究技术指导原则的通告
(2018年第103号)
2018年10月29日 发布
为保障仿制药一致性评价工作的顺利开展,国家药品监督管理局研究制定了《生物等效性研究的统计学指导原则》《高变异药物生物等效性研究技术指导原则》,现予发布。
特此通告。
附件:1.生物等效性研究的统计学指导原则
2.高变异药物生物等效性研究技术指导原则
国家药监局
2018年10月17日
附件1
生物等效性研究的统计学指导原则
一、概述
生物等效性(Bioequivalence, BE)研究是比较受试制剂(T)与参比制剂(R)的吸收速度和吸收程度差异是否在可接受范围内的研究,可用于化学药物仿制药的上市申请,也可用于已上市药物的变更(如新增规格、新增剂型、新的给药途径)申请。
目前生物等效性研究通常推荐使用平均生物等效性(Average Bioequivalence, ABE)方法。平均生物等效性方法只比较药代动力学参数的平均水平,未考虑个体内变异及个体与制剂的交互作用引起的变异。在某些情况下,可能需要考虑其他分析方法。例如气雾剂的体外BE研究可采用群体生物等效性(Population Bioequivalence,PBE)方法,以评价制剂间药代动力学参数的平均水平及个体内变异是否等效。
本指导原则旨在为以药代动力学参数为终点评价指标的生物等效性研究的研究设计、数据分析和结果报告提供技术指导,是对生物等效性研究数据资料进行统计分析的一般原则。在开展生物等效性研究时,除参考本指导原则的内容外,尚应综合参考《以药动学参数为终点评价指标的化学药物仿制药人体生物等效性研究技术指导原则》和《药物临床试验的生物统计学指导原则》等相关指导原则。
二、研究设计
(一)总体设计考虑
生物等效性研究可采用交叉设计或者平行组设计。
1.交叉设计
生物等效性研究一般建议采用交叉设计的方法。交叉设计的优势包括:可以有效减少个体间变异给试验评价带来的偏倚;在样本量相等的情况下,使用交叉设计比平行组设计具有更高的检验效能。
两制剂、两周期、两序列交叉设计是一种常见的交叉设计,见表1。
表1 两制剂、两周期、两序列交叉设计
序列 |
周期 |
|
1 |
2 |
|
1 |
T |
R |
2 |
R |
T |
如果需要准确估计某一制剂的个体内变异,可采用重复交叉设计。重复交叉设计包括部分重复(如两制剂、三周期、三序列)或者完全重复(如两制剂、四周期、两序列),见表2和表3。
表2 两制剂、三周期、三序列重复交叉设计
序列 |
周期 |
||||||
1 |
2 |
3 |
|||||
1 |
T |
R |
R |
||||
2 |
R |
T |
R |
||||
3 |
R |
R |
T |
||||
表3 两制剂、四周期、两序列重复交叉设计
序列 |
周期 |
||||||||
1 |
2 |
3 |
4 |
||||||
1 |
T |
R |
T |
R |
|||||
2 |
R |
T |
R |
T |
|||||
2.平行组设计
在某些特定情况下(例如半衰期较长的药物),也可以使用平行组设计。平行组设计因个体间变异给试验带来的影响较交叉设计大,应有更严格的受试者入选条件,如年龄、性别、体重、疾病史等,且需使用合理的随机化方案确保组间的基线水平均衡以得到更好的组间可比性。
3.其他设计
如果采用适应性设计等其他设计方法,可参考《药物临床试验的生物统计学指导原则》,且应事先与监管机构沟通。
(二)样本量
试验前需充分估计所需的样本量,以保证足够的检验效能,并在试验方案中详细说明样本量估计方法和结果。使用ABE方法进行生物等效性分析时,应基于明确的公式合理估计样本量。不同的设计,对应的样本量估计公式不同。
交叉设计的样本量需考虑的因素包括:(1)检验水准α,通常为双侧0.1(双单侧0.05);(2)检验效能1-β,通常至少为80%;(3)个体内变异系数(Within-subject coefficient of variation,CVw%),可基于文献报道或预试验结果进行估计;(4)几何均值比(Geometric mean ratio, GMR);(5)等效性界值。平行组设计的样本量估计可参考一般连续型变量的样本量计算公式。
如果使用的分析方法没有明确的样本量计算公式,也可以采用计算机模拟的方法估计样本量。
(三)受试者脱落
为了避免研究过程中因受试者的脱落导致样本量不足,申请人在进行样本量估计时应考虑适当增加样本量。
一般情况下,试验开始后不应再追加受试者。已分配随机号的受试者通常不可以被替代。
(四)残留效应
使用交叉设计进行BE研究通过每个受试者自身对照来增加比较的精度,其基本假设是所比较的制剂在下一周期试验时均不存在残留效应,或残留效应相近。如果交叉设计中存在不相等的残留效应,那么对于GMR的估计可能有偏。
研究设计时应避免发生残留效应。如果发现存在残留效应,申请人应当分析产生的可能原因,提供相应的判断依据,评估其对最终结论的影响。
三、数据处理和分析
(一)数据集
数据集事先需要在方案中明确定义,包括具体的受试者剔除标准。一般情况下,BE研究的数据集应至少包括药代动力学参数集(Pharmacokinetics Parameter Set,PKPS)、生物等效性集(Bioequivalence Set,BES)。用于不同药代动力学参数分析的受试者数量可能不同。
药代动力学参数集(PKPS):包括接受过至少一次研究药物的受试者中获得的药代动力学参数数据集。本数据集的作用在于描述性统计受试者的药代动力学参数数据。
生物等效性集(BES):通常包括至少一个周期且具有至少一个可评价药代动力学参数的统计分析集。本数据集是推断受试制剂和参比制剂是否生物等效的主要数据集。
(二)数据转换
建议对药代动力学参数(如AUC和Cmax)使用自然对数进行数据转换。选择的对数转换方式应在试验过程中保持一致,且需在方案中指明。在生物等效性研究中,由于样本量较少,难以确定数据的分布。因此,不建议以对数转换后数据不服从正态分布,或原始数据服从正态分布为由,而使用原始数据进行统计分析。
(三)统计假设与推断
平均生物等效要求受试制剂和参比制剂的差异在一定可接受范围内,通过以下假设检验来进行统计推断。
其中μT为受试制剂对数变换后药代参数总体均数,μR为参比制剂对数变换后药代参数总体均数,θ为生物等效性界值。在设定的检验水准下,若拒绝原假设H0,则表明生物等效。通常设定θ=ln(1.25),-θ=ln(0.8),即生物等效性要求受试制剂和参比制剂的GMR落在80.00%—125.00%范围内。
生物等效性标准应同时适用于各主要药代动力学参数,包括Cmax、AUC0-t和AUC0-∞。
通常情况下,如果研究药物包含多个组分,则每个组分均应符合生物等效性标准。
当Tmax与药物的临床疗效密切相关时,通常采用配对非参数方法对Tmax进行差异性检验。
(四)数据分析
1.概述
对于上文提到的生物等效性标准,通常是构建
的双侧90%置信区间,若此置信区间落在区间
内,则可推断受试制剂和参比制剂满足生物等效。此方法等价于在0.05的检验水准下进行双单侧假设检验。应根据不同的试验设计选择恰当的置信区间计算方法。计算出
的双侧90%置信区间后,可通过逆对数变换(指数变换)得到受试制剂和参比制剂原始数据的GMR的双侧90%置信区间。
2.交叉设计
对于交叉设计,建议使用线性混合效应模型进行分析计算。
3.平行组设计
建议采用基于正态分布均数差值的置信区间构建方法。
(五)离群数据处理
通常不建议剔除离群值。必要时需要针对离群值进行敏感性分析,即评价剔除和不剔除离群值对生物等效性结果的影响。如果结论不一致,需解释说明并分析原因。
(六)其他问题
如果一个交叉设计是在两个及以上的中心进行,统计模型中应该考虑中心效应。所用模型应该能估计不同中心的效应,反映不同中心的实际情况,并说明来自不同中心的试验数据是否可以合并进行分析。
如果存在多种受试制剂和/或多种参比制剂,通常会有多个生物等效的假设检验。若多个假设检验需同时满足,则无需进行I类错误的调整;若不要求同时满足,则需对I类错误进行调整,调整的方法有Bonferroni法、Hochberg法等。
四、结果报告
结果报告中应对以下内容进行详细说明。
(一)随机化
应具体说明试验用的随机化系统和随机化方案,包括随机化控制的因素、区组、种子数等,并附有随机化数字表。
随机化的结果应用表格描述,其中包含受试者编号、每一周期的用药情况,以及随机化控制的因素等。随机化结果可在附录中展现。
(二)统计学方法
应说明所采用的统计学方法,包括药代动力学参数的计算方法、分析模型和等效性检验方法、对数转换等内容。还需说明使用软件的名称与版本号。
(三)统计分析结果
应提供每个受试者给药后的检测成分浓度检测结果。在附录中应同时给出算术坐标以及对数坐标下每个受试者给药后的药时曲线、不同药物制剂的平均药时曲线。
应提供每个受试者的药代动力学参数结果,包括受试制剂和参比制剂的算术均值、几何均值、标准差和变异系数。
应提供包含序列内嵌套受试者、序列、周期和制剂因素的混合效应模型结果。若存在其他还需考虑的因素,也应包含在模型中。
应提供药代动力学参数几何均值比及其置信区间估计结果。
五、数据管理
以注册上市为目的的生物等效性研究的数据管理可参考临床试验数据管理相关技术要求。
生物等效性研究中生物样本分析等数据为外部数据,在样本分析及相关数据传输过程中应保持盲态,并按照提前制定的传输协议进行数据传输。试验涉及到的生物样本分析、数据传输和统计分析相关的计算机化系统应经过验证并保持验证状态。
六、参考文献
1.CFDA:以药动学参数为终点评价指标的化学药物仿制药人体生物等效性研究技术指导原则. 2016年3月.
2.CFDA:药物临床试验的生物统计学指导原则. 2016年6月.
3.FDA:Guidance for Industry: Statistical Approaches toEstablishing Bioequivalence. Jan 2001.
4.EMA:Guideline on the Investigation of Bioequivalence.Aug 2010.
5.EMA:Questions & Answers: Positions on Specific QuestionsAddressed to the Pharmacokinetics Working Party. Nov 2015.
七、术语表
英文全称 |
英文缩写 |
中文全称 |
Bioequivalence |
BE |
生物等效性 |
Average Bioequivalence |
ABE |
平均生物等效性 |
Population Bioequivalence |
PBE |
群体生物等效性 |
Geometric mean ratio |
GMR |
几何均值比 |
Within-subject coefficient of variation |
CVw% |
个体内变异系数 |
Bioequivalence Set |
BES |
生物等效性集 |
Pharmacokinetics Concentration Set |
PKCS |
药代动力学浓度集 |
Pharmacokinetics Parameter Set |
PKPS |
药代动力学参数集 |
Safety Set |
SS |
安全集 |
Subject nested in sequence |
/ |
序列内嵌套受试者 |
附件2
高变异药物生物等效性研究技术指导原则
一、概述
化学药物制剂生物等效性评价,通常采用平均生物等效性(Average bioequivalence, ABE)方法,等效标准为受试制剂与参比制剂的主要药动学参数(AUC和Cmax)几何均值比的90%置信区间落在80.00%~125.00%范围内。
某些药物由于生物利用度过低、酸不稳定、吸收前的广泛代谢等原因,导致一个或多个药动学参数的个体内变异系数(Within-subject coefficient of variation, CVW%)大于或等于30%,称为高变异药物(Highly variable drug, HVD)。在其他因素不变的情况下,随着个体内变异增加,生物等效性研究所需受试者数量也会相应增加。对于高变异药物,采用常规样本量和等效性判定标准,有时即使参比制剂与自身相比较,也可能出现不能证明其生物等效的情况。
对于安全性较好、治疗窗较宽的高变异药物,在充分科学论证的基础上和保证公众用药安全、有效的前提下,通过部分重复或完全重复交叉设计,根据参比制剂的个体内变异,采用参比制剂标度的平均生物等效性(Reference-scaled average bioequivalence, RSABE)方法,将等效性判定标准在80.00%~125.00%的基础上适当放宽,可减少不必要的人群暴露,达到科学评价不同制剂是否生物等效的目的。
当采用RSABE方法进行生物等效性评价时,应首先根据药物体内过程特点等因素,分析造成药物制剂高变异特征的可能原因,结合预试验或文献报道结果,充分论证和评估采用该方法进行生物等效性评价的适用性。采用部分重复或完全重复交叉设计,在符合《药物临床试验质量管理规范》(GCP)相关要求的条件下,正式试验获得的参比制剂药动学参数个体内变异系数大于或等于30%时,方可适用RSABE方法进行生物等效性评价。
本指导原则旨在为开展以药动学参数为主要终点指标的高变异化学药物生物等效性研究时,如何进行研究设计、样本量估算、统计分析、结果报告等方面提供技术指导。
二、研究总体设计
研究总体设计的目标为采用科学的方法最大程度地降低生物等效性评价的偏倚。
(一)试验设计
应根据药物特点,综合考虑拟定的统计分析方法、受试者可获得性、残留效应等因素,选择非重复交叉设计、重复交叉设计或平行组设计。
1.交叉设计
(1)非重复交叉设计
非重复交叉设计是生物等效性研究常采用的标准设计,即两制剂、两周期、两序列、交叉设计。对于高变异药物,由于个体内变异较大,采用此种设计进行生物等效性研究时,需要适当增加样本量,以满足试验的检验效能。
(2)重复交叉设计
重复交叉设计可分为三周期部分重复(仅重复使用参比制剂)和四周期完全重复(重复使用参比制剂和受试制剂)交叉设计。重复交叉设计可保证同一受试者至少服用参比制剂两次,获得确切的参比制剂个体内变异系数,以决定是否采用RSABE方法进行生物等效性分析。常采用的重复交叉设计见表1和表2。
表1 两制剂、三序列、三周期重复交叉设计
序列 |
周期 |
||
1 |
2 |
3 |
|
1 |
T |
R |
R |
2 |
R |
T |
R |
3 |
R |
R |
T |
表2 两制剂、两序列、四周期重复交叉设计
序列 |
周期 |
|||
1 |
2 |
3 |
4 |
|
1 |
T |
R |
T |
R |
2 |
R |
T |
R |
T |
2.平行组设计
特殊情况下(例如长半衰期药物)可采用平行组设计。与交叉设计相比,平行组设计需要更大的样本量。
一般应采用单次给药进行高变异药物的生物等效性研究。若基于安全性考虑,需入选正在进行药物治疗且治疗不可间断的患者,可在多次给药达稳态后,采用ABE方法进行高变异药物的生物等效性评价。
试验设计的其他要求可参考《以药动学参数为终点评价指标的化学药物仿制药人体生物等效性研究技术指导原则》及《生物等效性研究的统计学指导原则》。
(二)样本量估计
试验前需充分估计所需的样本量,以保证足够的检验效能。对于ABE方法,可综合考虑试验设计、检验水准、检验效能、制剂间平均生物利用度可能的差异、参比制剂药动学参数的个体内变异,建议充分考虑研究过程中可能的受试者脱落等因素,进行样本量估计。具体参见《生物等效性研究的统计学指导原则》。
RSABE方法的样本量估计可通过计算机模拟的方法;也可将参比制剂的个体内标准差SWR视为常数,先求得经调整的等效性界值,再代入到相应设计下基于ABE方法的计算公式求算,建议适当增加样本量进行保守估计。
三、统计分析方法
应在研究方案和统计分析计划中提前制定生物等效性分析方法,若选择非重复交叉设计或平行组设计,应采用ABE方法;若选择部分重复或完全重复交叉设计,则可采用ABE方法或RSABE方法。与ABE方法相比,RSABE方法依据参比制剂的个体内变异适当放宽了等效性判定标准。
(一)平均生物等效性方法
采用ABE方法评价时,应以主要药动学参数(AUC和Cmax)几何均值比的90%置信区间落在80.00%~125.00%的范围内为等效标准。
(二)参比制剂标度的平均生物等效性方法
RSABE法主要分为下列三步:
1.计算参比制剂的个体内标准差(SWR)
采用部分重复或完全重复交叉设计,可获得受试者两次服用参比制剂后,主要药动学参数的个体内标准差(SWR),SWR可通过公式1计算:
(公式1)
其中,i为研究中的序列编号(m在部分重复和完全重复交叉设计中分别为3和2,ni为第i个序列中受试者人数);j为序列内受试者编号;Dij(Rij1-Rij2)代表参比制剂两次给药后自然对数转化后药动学参数的差值;
;n为研究中受试者总人数。不同药动学参数的SWR需分别计算。
SWR与CVW%存在以下换算关系:
(公式2)
若SWR≥0.294,即CVW%≥30%,可采用RSABE方法进行等效性评价(应用于AUC、Cmax两者之中任意一个或全部采用)。若SWR<0.294,即CVW%<30%,则应采用ABE方法评价生物等效性。
2.计算以下算式的单侧95%置信区间上限(Upper bound of 95% confidence interval)
运用Howe一阶逼近法来确定
的单侧95%置信区间上限。式中和分别表示在受试制剂和参比制剂的生物等效性研究中分别获得的自然对数转换的AUC或Cmax的均值。
(公式3)
σw0为法规限度(Regulatorylimit, 一般取σw0=0.25)。
3.等效性判断标准
若的单侧95%置信区间上限小于等于零,同时,制剂间主要药动学参数的几何均值比(Geometricmean ratio, GMR)的点估计值在80.00%~125.00%范围内,可判定受试制剂与参比制剂的药动学评价指标(AUC或Cmax)具有生物等效性。只有AUC和Cmax均判定等效才可申明该制剂与参比制剂具有生物等效性。
四、报告总结与讨论
研究报告撰写内容除应符合生物等效性研究的一般技术要求外,还应重点进行高变异药物特征论证、风险评估及相应的数据分析报告。
(一)高变异特征论证
通常情况下,导致药物个体内高变异特征的潜在因素包括但不限于:(1)胃肠道pH值、胃肠动力、胃排空、小肠转运和结肠驻留时间等影响生物利用度的生理因素;(2)药物分布、首过代谢、全身代谢和清除等药物固有性质;(3)溶解性等原料药的理化性质;(4)药物溶出等制剂的处方因素;(5)饮食等其他因素。
采用RSABE方法前,应基于已有的文献资料、预试验结果等,充分分析参比制剂生物药剂学特征和体内过程,估算主要药动学参数(AUC和/或Cmax)的个体内变异系数,充分论证采用RSABE方法的适用性。必要时,还需通过补充相关试验加以论证。
(二)风险评估
通常情况下,只有安全性较好、治疗窗较宽的高变异药物才可采用RSABE方法进行不同制剂的生物等效性的评价。由药物的固有属性、机体生理因素等引起的高变异性一般无法通过提高制剂和试验质量而消除,由于存在这种特性的参比制剂上市过程中已得到充分暴露并经过临床研究安全性和有效性证明,此时,采用RSABE方法进行生物等效性评价是可接受的。
采用RSABE方法进行统计分析,应进行严格科学的试验设计,试验通常应在同一中心完成,并应避免试验质量对个体内变异的估计引入偏倚。
对于由制剂质量或试验操作不当等原因引起的高变异,不适合采用RSABE方法。申办者应确保制剂质量的均一性及可控性,加强研究过程中的试验质量管理,并在研究报告中比较临床研究所获得的个体内变异与文献数据的差异,避免生物等效性判定标准的不当放宽。
(三)结果报告
根据文献或预试验的研究结果,明确正式试验所选择的试验设计类型和生物等效性统计方法,其中包括个体内变异结果与预期有差异时的备选统计方法。生物等效性研究报告除应符合《生物等效性研究的统计学指导原则》和临床试验数据管理相关技术要求以外,若采用RSABE方法,还应提供如下信息:
1.药动学参数AUC0-t、AUC0-∞和Cmax的个体内标准差(SWR);
2.AUC0-t、AUC0-∞和Cmax的个体内变异系数(CVW%)及与文献相应数据的比较;
3..的单侧95%置信区间上限;
4.AUC0-t、AUC0-∞和Cmax的几何均值比的点估计值。
五、特殊考虑
对于暴露量-效应曲线不平缓甚至陡峭的药物,如替格瑞洛、达比加群等,即使个体内变异系数大于30%,也不建议采用RSABE方法放宽等效性判断标准,以避免某些患者可能由于暴露量增加出现安全性风险。
含有高变异药物的复方制剂(例如缬沙坦氨氯地平片)在试验设计时应充分考虑单个药物的生物药剂学和药代动力学特点,根据其中个体内变异较高的药物进行相应样本量估计,各组成药物则应分别选择适宜的统计分析方法进行生物等效性分析。
六、参考文献
1. CFDA:以药动学参数为终点评价指标的化学药物仿制药人体生物等效性研究技术指导原则. 2016年3月.
2. CFDA:药物临床试验的生物统计学指导原则. 2016年6月.
3. FDA:Draft Guidance on Progesterone. Feb 2011.
4. Lawrence X. Yu, Bing V. Li.FDA Bioequivalence Standards. Jul 2014.
5. FDA:Draft Guidance on Dabigatran Etexilate Mesylate.Jul 2017.
附录
附录1 高变异药物生物等效性研究决策树
附录2 术语表
英文全称 |
英文缩写 |
中文全称 |
Highly variable drug |
HVD |
高变异药物 |
Average bioequivalence |
ABE |
平均生物等效性 |
Reference-scaled average bioequivalence |
RSABE |
参比制剂标度的平均生物等效性 |
Within-subject coefficient of variation |
CVW% |
个体内变异系数 |
Geometric mean |
GM |
几何均值 |
Geometric mean ratio |
GMR |
几何均值比 |
Confidence interval |
CI |
置信区间 |
Regulatory limit |
/ |
法规限度 |
Upper bound of 95% confidence interval |
/ |
单侧95%置信区间上限 |